किसी गणितीय व्यंजक को साधारण भिन्न या संख्यात्मक रूप में बदलने की प्रक्रिया ‘सरलीकरण’ कहलाती है।
बोडमास नियम से सरलीकरण
BODMAS में कोष्ठक (Bracket), का (of), भाग (Division), गुणा (Multiplication), जोड़ (Addition), तथा घटाव (Subtraction) की क्रिया एक साथ की जाती हैं।
B → कोष्ठक ( Bracket )
कोष्ठक के चार प्रकार
कोष्ठक चार प्रकार के होते हैं –
― → रेखा कोष्ठक (Line Bracket)
( ) → छोटा कोष्ठक (Simple or Small Bracket)
{ } → मझला कोष्ठक (Curly Bracket)
[ ] → बड़ा कोष्ठक (Square Bracket)
इनको इसी क्रम में सरल करते हैं ।
यदि कोष्ठक के पहले ऋण चिह्न हो, तो सरल करने पर अन्दर के सभी चिह्न बदल जाते हैं।
O → का ( Of )
D → भाग ( Division )
M → गुणा ( Multiplication )
A → योग ( Addition )
S → अन्तर ( Subtraction )
यहाँ कुछ BODMAS नियम पर आधारित बहुविकल्पीय प्रश्न (MCQ) दिए गए हैं:
BODMAS के अनुसार निम्नलिखित में से सही गणना क्या है?
8+6÷2×3
(A) 21
(B) 17
(C) 22
(D) 19
BODMAS नियम का पालन करते हुए इस समीकरण को हल करें: 7+3×(4−2)÷2
(A) 10
(B) 12
(C) 13
(D) 14
BODMAS के अनुसार निम्नलिखित में सही उत्तर क्या होगा?
18÷3×2+5
(A) 17
(B) 13
(C) 16
(D) 15
BODMAS का उपयोग करके इस समीकरण को हल करें: 6+(12÷4)×3
(A) 15
(B) 21
(C) 18
(D) 24
निम्नलिखित में BODMAS के अनुसार सही हल क्या है?
10×(6+2)÷4
(A) 16
(B) 20
(C) 14
(D) 15
BODMAS नियम को ध्यान में रखते हुए यह समीकरण हल करें: (5+10)÷5+2×4
(A) 11
(B) 14
(C) 12
(D) 13